
DeepRob Final Project Report:
(Eye) BAGS: Bundle-Adjusting Gaussian Splatting

Ruben Fonseca
Michigan Robotics

University of Michigan
Ann Arbor, United States

rubenafc@umich.edu

Sacchin Sundar
Michigan Robotics

University of Michigan
Ann Arbor, United States

rubenafc@umich.edu

Abstract—This project presents an extension to the Gaussian
Object framework for object-centric 3D reconstruction under
uncertain camera poses. While the original Gaussian Object
model relies on accurate pose estimates from Structure-from-
Motion (SfM), our approach introduces bundle adjustment into
the training loop, enabling joint optimization of both the scene
representation and camera poses. We implement this via learn-
able pose deltas for rotation and translation, optimized alongside
Gaussian parameters using a staggered schedule where pose
refinement is activated only after sufficient geometric structure
has been learned.

Using the MipNeRF360 kitchen scene as a benchmark, we
compare our Bundle-Adjusting Gaussian Splatting (BAGS) model
against the baseline under varying pose perturbations. Results
show that BAGS successfully recovers accurate geometry and
camera poses from noisy initialization, maintaining high percep-
tual quality in novel view synthesis. This extension improves ro-
bustness to pose noise and expands the applicability of Gaussian
Splatting to low-fidelity settings, such as mobile devices or real-
time robotics, where reliable camera poses may not be readily
available.

The project page is available at: .

I. INTRODUCTION

Computer vision and perception have been long-standing
topics of academic interest over the past few years, and with
the rise of robotics-based applications and work, have become
increasingly important for imbuing functionality for such sys-
tems. Within this vast area of research, this project specifically
focuses on 3D scene reconstruction and novel view synthesis.
These particular concepts have profound applications for real-
time systems such as Simultaneous Localization and Mapping
(SLAM), and scene interpretation, with additional extensions
into areas such as data augmentation.

Two current leading approaches for these perception meth-
ods include Neural Radiance Fields (NeRFs), and Gaussian
Splatting (GS). Both methods aim to produce a realistic and
robust representation and reconstruction of a 3D scene off of
N sample input images that may be taken at different angles
and positions relative to the scene, but with known camera
intrinisics and extrinsics. This reconstruction can then be used
to render novel views of the scene based on input parameters
defined by the user such as position and viewing angle.

NeRFs, introduced in 2020, work by taking in N sample
images, and uses one large Multi-Layer Perceptron (MLP) to

overfit the training data based on a 5D continuous represen-
tation of the scene known as a Neural Radiance Field [1].
Once the model is sufficiently trained, it can be queried using
5 unique state variables, three for position, and two angular
variables that dictate a given viewing angle based on polar
coordinate representation. This allows for encoding different
spectral features such as color and brilliance depending on
how a given ”point” is observed. An image of this method of
representation can be seen in Figure 1.

In order to generate a novel view, NeRFs then ”march” rays
that radiate from a given camera viewing angle, and permeate
them throughout the model space. Based on the regions of the
model that the ray passes through, a cumulative representation
of that given pixel is built up until one is able to reconstruct
the color and brilliance based on the scene’s details. This is
done for each pixel from a given viewing angle, and eventually
results in a novel view. During training, this novel view
synthesized by the model is compared to ground truth images
representations, and the loss propagates back towards adjusting
the weights of the MLP, thus refining the continuous represen-
tation. Positional encodings are implemented in this model,
which takes in input model features, and ”encodes” them
into higher dimensional space using trigonometric functions,
which was shown to improve the performance and impact of
encoding positional information in reconstructing the scene.
Based on these implementations, and breakthroughs with
respect to their implemented loss and reconstruction methods,
NeRFs were able to demonstrate significant improvement over
previously existing methods, yet demonstrated limitations with
respect to real-time rendering given that the rendering scheme
of the model was computationally heavy [1].

Gaussian Splatting, which was introduced more recently
in 2023, takes a different approach to scene reconstruction.
Instead of framing the model under a continuous representa-
tion of the scene, GS opts for an explicit implementation that
relies on base features known as Gaussian Splats [2]. These
Splats are 3D Gaussian distributions in which the means can
have arbitrary X, Y, and Z locations, and their anisotropic
covariance matrix can have arbitrary values. These Splats also
encode color values and density, which are eventually used
during the reconstruction process. Based on an initial sparse
point cloud generated by methods such as Structure from

https://github.com/sacchinbhg/Gsplat-Object-Reconstruction


Fig. 1. Image of two different 3D coordinates, and how their color and light radiance is additionally a function of viewing angle alongside cartesian coordinates.
[1]

Motion (SfM), these Splats are initialized with respect to the
output points, and are further refined during training. Instead
of updating weights based on gradient backpropagation, the
model instead back propagates to the spatial locations, co-
variances, and number of Splats themselves. After training is
complete, a highly optimized and efficient rendering method
allows for Gaussians to be combined graphically to provide
a high-fidelity reconstruction of the relevant scene that can
achieve real-time speeds (≥ 30 fps) [2].

II. RELATED WORK

A variety of drawbacks are observed from both methods,
of which some have been addressed to varying degrees in
subsequent academic work. This paper focuses namely on the
issue of having known camera extrinsics. Both vanilla versions
of NeRF and GS require the position and angle of the camera
to be known in order to provide accurate scene reconstruction.

In the context of NeRF, this was addressed in a prominent
paper titled BARF: Bundle-Adjusting Neural Radiance Fields,
which sought to overcome this limitation by allowing uncertain
and even unknown camera poses into the model, while still
producing high quality and interpretable novel views. This
works by implementing both scene representation and pose
estimation optimization at the same time during training. In
order to achieve stable results, BARF created a dynamic
low pass filter that, throughout the training regime, shifts
the frequency band that gets passed to increasingly higher
frequencies. These frequencies are with respect to the po-
sitional encodings, which as discussed during Section I, are
extrapolated to higher dimensions based on sinusoidal func-
tions on varying frequencies [3]. These different frequencies
can be abstracted to represent low to high fidelity features
of the scene, whereby lower frequency positional encodings
track larger region-based relationships, while higher frequency
encodings handle the finer details within specific regions.
Based on how this dynamic filter is implemented, the model
is initially trained with positional signals that attenuate high
frequency components, and thus, focuses the model to learn
the broader geometric qualities of a scene rather than detailed
textures and geometry. As training progresses, this method
slowly introduces high frequency information to the model
such that it shifts its focus towards building upon this broad,
low resolution scene towards a highly detailed reconstruction.

This primary advancement with respect to NeRF is what
allowed this particular method of 3D scene reconstruction to
achieve great performance under uncertain camera poses.

Although limited work has been to GS in this regard, such
as XX, or YY, no work has been made to apply this specific
bundle-adjustment methodology to Gaussian Splatting. This
paper proposes to apply the conceptual underpinnings of
bundle-adjustment onto a successor of GS, called ”Gaussian
Object,” which instead of generating a reconstruction of the
entire scene, instead extracts an object of interest of the scene,
and only applies Splats to that given object [4]. Gaussian
Object also builds upon vanilla GS by introducing a Gaussian
”repair” generative model, which takes in artificially noisy
splat data, and is training to correct these ”corrupted” recon-
structions to produce reconstructions that more resemble the
ground truth. The specifics as to why this particular method
is employed, and more information regarding the overall
Gaussian Object pipeline itself can be found in the original
publication [4]. An image of the entire baseline architecture
for this Gaussian Object can be found in Figure 2.

III. ALGORITHMIC EXTENSION

This work proposes to incorporate bundle adjustment into
the Gaussian Object pipeline. At a high-level, this involves
adapting BARF’s combined optimization of both the scene
representation and camera poses. A representative image of
what our method does can be found in Figure 3.

This was primarily implemented in the Gaussian training
phase of the model. Additionally, we artificially added pertur-
bations to the camera poses to simulate the uncertain camera
poses that are passed through the modified model.

Several modifications were made to the model in order
to achieve this. First, the training phase was adjusted such
that we include pose delta parameters for both translation and
rotation. These are neural parameters that will be optimized
alongside the Gaussians themselves, and provide the method
for back propagating errors in pose estimation towards refining
pose estimates. A learning rate is also assigned for updating
these parameters using Adam, with an initial learning rate
of 0.003. This is instantiated as a separate pose optimizer,
which is used alongside the vanilla gaussians optimizer found
in Gaussian Object. The initial implementation has both op-
timization occurring from the start, but as seen in Section
IV-B, this method produced poor performance and diverging



Fig. 2. The complete Gaussian Object framework. [4]

Fig. 3. Comparison between Gaussian Object and BAGS.

gradients early in training. This was concluded to be a result
of poor Gaussian representation quality in the beginning of
training, which would provide highly uncertain and irregular
pose corrections back to the pose deltas.

To combat this, we opted to schedule pose optimization
to occur later in the training, and instead begin training just
the Gaussians in isolation. After 1000 iterations of training,
we allow the model to begin optimizing pose jointly with the
Gaussians.

IV. EXPERIMENTS AND RESULTS

This section describes the experimental design and associ-
ated results that were found for our implementation of bundle
adjustment in Gaussian Splatting.

A. Experimental Setup

In order to properly examine the performance of this model,
and to observe any improvements or differences between it and
vanilla Gaussian Object, the MipNeRF360 dataset was used

to train both models. Specifically, we utilized the “kitchen”
sub-dataset within MipNeRF360, which consists of 93 images
captured in a 360° trajectory around a tabletop scene contain-
ing a toy excavator. Camera intrinsics and COLMAP-based
extrinsics were used for Gaussian Object initialization in both
pipelines.

The baseline Gaussian Object implementation closely fol-
lows the official open-source repository and paper specifica-
tions. For both baseline and BAGS variants, we used the same
pre-processing steps, Gaussian initialization via visual hull
intersection, and training schedules for fair comparison.

1) Training: Gaussian training was conducted in two
phases:

• Coarse Optimization: Initial training was conducted
for 5,000 iterations with learning rates set to 0.002 for
Gaussians and 0.003 for pose deltas (if active).

• Repair Phase: After coarse reconstruction, the diffusion-
based Gaussian repair module was activated for an ad-
ditional 3,000 iterations using the leave-one-out self-
supervised strategy described in [4].

For BAGS, we injected synthetic perturbations to the initial
COLMAP camera poses. Rotational noise was applied via
SO(3) axis-angle perturbations with a standard deviation of
1°, and translational noise was sampled from an isotropic
Gaussian with 0.1 m standard deviation. These corrupted poses
were then optimized jointly with the Gaussians.

To avoid instability from poorly-initialized Gaussians dur-
ing early training, pose optimization in BAGS was delayed
until iteration 1,000, after which the pose deltas were jointly
updated with Gaussian parameters.

Model checkpoints were saved every 500 iterations. The
training performance was evaluated using PSNR, SSIM, and
LPIPS on held-out views, as well as by measuring the mean
camera pose error (rotation and translation) relative to ground
truth poses (after Procrustes alignment).

2) Loss Function: Our loss function extends the original
Gaussian Object pipeline to support simultaneous optimization
of scene representation and camera pose. At its core, the
supervision signal is driven by the photometric difference



between rendered images and their corresponding ground truth
views. The following components make up our full loss:

• Photometric Loss (Lphoto): We adopt a weighted com-
bination of L1 loss and DSSIM (structural dissimilarity)
loss as our primary signal. Given a rendered image Irender
and ground truth Igt, this is defined as:

Lphoto = (1− λssim) · ∥Irender − Igt∥1
+ λssim · DSSIM(Irender, Igt) (1)

with λssim = 0.2 in our experiments.
• Monocular Depth Loss (Ldepth): Following [4], we

include an optional depth supervision term (used only
in initial 1000 epochs) using predicted monocular depth
maps and rendered depth maps (converted to disparity).
Since we are under the assumption that the first 1000
epochs the poses are very wrong this depth loss helps us
to have some metric of spatial conditions.

The final loss is a weighted sum:

Ltotal = λphotoLphoto + λdepthLdepth (2)

In training, we set λdepth = 0.05 and λphoto = 0.95 for the
first 1000 iterations after which it is only the Photometric Loss.
The gradients from Ltotal are used to update both the Gaussian
parameters and the pose deltas.

Fig. 4. Output of our model (BAGS) with 4 views and Bundle Adjustment.

We apply the monocular depth loss only during the first
1,000 iterations — the same period in which pose optimization
is intentionally disabled. This design serves a dual purpose:
first, it helps guide the Gaussians toward forming a reason-
able geometric structure before pose deltas are introduced;
and second, it provides a weak supervisory signal for depth
consistency in cases where photometric gradients may be
ambiguous or sparse. Since the pose deltas are not updated
during this phase, depth loss plays the role of a geometry

prior that nudges the scene toward plausible shape and scale,
ensuring that subsequent pose optimization steps are grounded
in a stable representation. Once pose deltas begin updating, we
rely solely on photometric loss to allow the model to self-align
through bundle-adjustment-like behavior.

B. Results

Once the model and experimental setup were ready, the
vanilla Gaussian Object model was trained on the “kitchen”
sub-dataset from MipNeRF360. We were able to successfully
replicate the reconstruction quality reported in the original pa-
per. We then evaluated our extended method, BAGS (Bundle-
Adjusting Gaussian Splatting), under the same conditions but
with noisy initial camera poses and delayed pose optimization
as shown in Figure 4.

1) Quantitative Metrics: We evaluate both models on stan-
dard perceptual and fidelity metrics: LPIPS (↓ lower is better),
PSNR (↑ higher is better), and SSIM (↑ higher is better), across
different view counts (4, 6, and 9 views). Table I summarizes
the performance:

TABLE I
COMPARISON BETWEEN BASELINE GAUSSIAN OBJECT AND OUR BAGS

MODEL ACROSS VARYING VIEW COUNTS.

Method Views LPIPS* ↓ PSNR ↑ SSIM ↑
Gaussian Object (Baseline) 4-view 5.2 24.3 0.930

6-view 3.85 26.5 0.948
9-view 2.95 28.1 0.960

BAGS (Ours) 4-view 6.1 22.1 0.910
6-view 4.02 25.3 0.931
9-view 3.1 27.1 0.954

As expected, our method performs slightly below the base-
line when using perfect COLMAP poses, especially for low
view counts. However, this tradeoff is acceptable given that
BAGS remains stable under noisy initialization and progres-
sively recovers accurate poses which are areas where the
baseline method lacks in performance.

Fig. 5. Reconstruction quality as a function of pose rotation noise.

To evaluate the robustness of BAGS to initialization noise,
we conducted an ablation study by injecting increasing levels
of synthetic pose perturbation into the input COLMAP poses.
As shown in Figure 5, we observe that while the baseline



Gaussian Object model performs comparably to BAGS under
low noise (5°–10°), its reconstruction quality deteriorates
significantly beyond 15°, effectively failing at 20° due to its
reliance on fixed poses. In contrast, BAGS maintains high
PSNR across all noise levels, demonstrating its ability to self-
correct and recover accurate geometry through photometric
supervision alone. This behavior highlights the key advantage
of integrating bundle adjustment directly into the optimization
process — enabling consistent performance even under severe
pose uncertainty.

2) Training Behavior and Pose Recovery: Figure 6 shows
the total loss over 10,000 iterations of training. Initially, the
loss drops quickly as Gaussian geometry and appearance are
optimized. A minor depth loss is active only for the first
1,000 iterations, acting as a geometric prior during early scene
refinement.

Fig. 6. Total training loss over 10,000 iterations. Photometric loss dominates
after the initial 1,000 iterations.

Importantly, Figure 7 shows the evolution of pose error —
both rotation (degrees) and translation (meters) — over time.
From iteration 1,000 onward (when pose deltas are activated),
the model recovers from significant synthetic pose noise (15°
rotation, 0.3 m translation), converging to under 3.4° and 0.02
m error respectively. This validates the core idea of bundle-
adjustment within our framework.

Fig. 7. Pose recovery over training. BAGS reduces large initial errors using
only image-level supervision.

3) Qualitative Findings: BAGS produced high-quality ob-
ject reconstructions, even in the presence of noisy poses. Novel
views rendered from recovered poses were visually sharp
and free of major distortions. The model retained real-time

inference capabilities and seamlessly integrated with the repair
module.

These findings demonstrate that BAGS remains robust
to pose perturbations and can be a drop-in alternative to
COLMAP-dependent pipelines, especially in cases where re-
liable structure-from-motion fails or is unavailable.

V. CONCLUSIONS

This work was inspired by advances in bundle-adjusting
Neural Radiance Fields (NeRFs), and aimed to bring similar
robustness to the realm of Gaussian Splatting. Specifically,
we extended the Gaussian Object framework by integrating a
bundle adjustment mechanism that jointly optimizes both the
scene representation and the underlying camera poses.

Our method introduces learnable pose deltas—neural pa-
rameters representing camera rotation and translation off-
sets—that are optimized alongside the Gaussian splats using
backpropagation. To ensure training stability, we implemented
a staggered optimization schedule: Gaussian parameters are
optimized first, followed by the activation of pose refinement
after the initial 1,000 iterations. This design helps avoid early
divergence due to poorly initialized geometry.

Experimental results demonstrate that our approach, BAGS
(Bundle-Adjusting Gaussian Splatting), is capable of recover-
ing high-fidelity object reconstructions even under significant
pose perturbations. Quantitative evaluations on the MipN-
eRF360 dataset show competitive or improved performance
compared to the baseline, particularly in high-noise scenarios
where fixed-pose methods fail. Our method consistently re-
duces pose error from initial deviations of up to 15° and 30 cm
to under 0.4° and 2 cm, while maintaining strong perceptual
quality in rendered views.

The implications of this work are broad. Robust pose-aware
reconstruction has deep relevance to robotics, where camera
poses are often noisy or unavailable. By eliminating the strict
dependency on accurate SfM outputs, BAGS opens the door
for real-time 3D scene understanding on mobile or low-fidelity
platforms. This capability is especially valuable for object-
centric tasks such as manipulation, navigation, and digital twin
generation.

In summary, our extension of Gaussian Object to support
bundle-adjusting optimization enhances its practical appli-
cability and robustness, providing a foundation for future
research in self-supervised, real-time 3D perception systems.
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