

Sacchin Ganesh Sundar

Graduate Researcher · Field Robotics Group · University of Michigan

✉ sacchin@umich.edu — ☎ +1 (248) 222-9059 — 🌐 sacchinbhg.github.io — 💬 LinkedIn

Research Interests

Physics-aware perception; computational imaging; differentiable sensor models; Neural scene representations; multimodal world models; SLAM; robot learning; Neuro-symbolic planning

Education

University of Michigan <i>M.S. in Robotics (GPA: 3.827/4.000) Ann Arbor, MI, USA</i>	Aug 2024 – Present
Vellore Institute of Technology <i>B.Tech. in Computer Science (AI & Robotics) (GPA: 3.781/4.00) Chennai, India</i>	Sep 2020 – May 2024

Experience

University of Michigan <i>Ann Arbor, MI, USA</i> <i>Research Assistant, Field Robotics Group</i>	Nov 2024 – Present
• Neural implicit bathymetry from side-scan sonar using Lambertian & NEUS-style rendering of waterfall images.	
• Physics head for transformer models predicting attenuation (β) and backscatter (B_∞); photometric/physics-aware losses for underwater color correction.	
• SurfSLAM in preparation to IEEE Transactions on Field Robotics	
• Datasets, training infra, and ablations.	
University of Michigan <i>Ann Arbor, MI, USA</i> <i>Graduate Student Instructor</i>	Aug 2024 – Present
• Primary Lab Instructor for SLAM & Navigation, teaching a class of 40 students.	
• Developed codebase for undergraduate robotics coursework.	
The ePlane Company <i>Chennai, India</i> <i>Autonomy Intern</i>	Aug 2023 – Jan 2024
• Designed GNC solutions for eVTOL drones, reducing trajectory deviation by 15% and improving flight stability.	
• Engineered automatic power grid inspection using RRT-Connect, achieving 25% reduction in planning time.	
• Integrated MAVROS & ArduPilot with <50 ms latency; enhanced flight control precision by 30%.	
• Developed Aruco marker-based localization, increasing navigation accuracy by 20% and inspection efficiency by 35%.	
Ati Motors <i>Bangalore, India</i> <i>Robotics AI Intern</i>	May 2022 – Jul 2022
• Developed image retrieval system for kidnapped robot problem; improved localization accuracy from 63% to 82%.	
• Built custom CNN derived from ResNet-50 for optimized feature vectorization and weight training.	
• Implemented OPTICS clustering and ORB-FLANN matching with visual bag-of-words for robust feature matching.	
Hyundai Motors India <i>India</i> <i>Project Intern</i>	May 2021 – Jul 2021
• Established Faster R-CNN model achieving 85% accuracy in roof welding defect detection for body shop.	
• Integrated model with existing PLC line for seamless quality control pipeline operation.	

Publications

Submitted

- **Sundar, S.***, Kikani, A.*[†], Alam, A., et al. *MARVO: Marine-Adaptive Radiance-aware Visual Odometry*. Submitted to IEEE/CVF Conference on Computer Vision and Pattern Recognition 2026. Preprint available at [arXiv:2511.22860](https://arxiv.org/abs/2511.22860). (*equal contribution)
 - Physics-aware transformer for underwater feature matching with radiance adapter compensating wavelength-dependent attenuation.
 - Multi-sensor factor-graph (visual-inertial-barometric) followed by offline RL-based pose-graph optimization.
 - Achieved 1.73m ATE and 1.2% drift on real underwater deployments, outperforming SLAM and Matching baselines.

In Preparation

- Isaacson, S., Bagoren, O., **Sundar, S.**, et al. *SurfSLAM: Sim-to-Real Stereo Underwater Reconstruction for Neural SLAM*. In preparation for IEEE Transactions on Field Robotics (T-FR).
 - Generated high-quality 3D ground-truth reconstructions and disparity maps for the lab's underwater stereo dataset using multi-view photogrammetry workflows.

- Ran and evaluated baseline stereo networks on both the synthetic and real-world underwater datasets to establish performance benchmarks for SurfSLAM.

Patent

GROUND UNDERWATER AERIAL ROBOTIC DRONE (G.U.A.R.D.)

Filed 2021

India App. No.: 201941052320. Multi-terrain robotic drone (underwater, land, air) with modular sensors.

Selected Projects

NSOS: Neuro-Symbolic Grounding in Outdoor Scenes

Nov 2024 – Dec 2024

- Extended NS3D framework to outdoor environments using 3D Gaussian Splatting for improved spatial and photometric reasoning.
- Developed 3D encoder consuming Gaussian splats with mean position, covariance, and RGB attributes for object-centric embeddings.
- Implemented differentiable neural executor for symbolic program execution on color-aware Gaussian features.
- Evaluated on ReferIt3D and Talk2Car datasets, establishing baseline for outdoor 3D language grounding tasks.

BAGS: Bundle Adjusted Gaussian Splatting

Jan 2025 – Apr 2025

- Sparse-view object modeling with visual hull priors and floater suppression; BA for pose & geometry refinement.
- Outperforms COLMAP baselines with only 4 views (accuracy, completeness).

Spring-Mass 3D Object Reconstruction

Sep 2024 – Jan 2025

- Differentiable spring-mass physics with Gaussian splats for deformable reconstruction; ~60% lower Chamfer error.
- Achieved 82% improvement in dynamic reconstruction accuracy vs. baseline physics-augmented NeRF methods.

CalypsoSim: AUV Simulator

Aug 2022 – Jan 2024

- ROS-compatible 6-DoF Fossen hydrodynamics; HIL with real-time ROS control; ~40% runtime gains.
- Achieved 95%+ fidelity match with real-world AUV behavior in controlled environments.

HiDDOP: High-Density Dynamic Object Planning

Jan 2023 – Aug 2023

- Attention social pooling + TD learning; zero collisions with efficient MLP+ELU policy.
- Utilized social attentive pooling to learn relative importance of neighbors in a data-driven fashion.

Deep Learning 6-DOF Pose Estimation

Dec 2022 – Apr 2023

- Memory-augmented pose graph optimization for low-drift 6D object pose tracking using BundleTrack.
- Real-time performance of 10Hz with efficient CUDA implementation.

Technical Skills

Programming: Python, C++, Rust, MATLAB, JavaScript

ML/Vis: PyTorch, TensorFlow, OpenCV, scikit-learn, Weights & Biases

Robotics: ROS/ROS2, SLAM, Gazebo, MoveIt!, OpenRAVE

Systems: Git, Docker, Linux, CMake, GDB, Valgrind

Specialized: CUDA, NeRFs, Gaussian Splatting, Physics-based Rendering

Relevant Coursework

Graduate

Deep Learning for Robot Perception; Robotics Systems Lab; Robotic Manipulators; CHRI; Math for Robotics

Undergraduate

Reinforcement Learning; Machine Learning; Mathematical Methods of CV; Robot Vision; Robot Programming (TA)

Awards & Honors

TAC Challenge: 2nd (2024), 6th (2023); CII National Robotics Gold (2023); Hyundai Innovation Challenge Winner (2021)

Leadership & Service

Outreach Chair, Robotics Graduate Student Council

Jan 2025 – Present

University of Michigan, Ann Arbor, MI

- Lead demos, tours, and outreach strategy to broaden access to robotics.

Chairperson, Dreadnought Robotics

Jul 2022 – May 2024

VIT Chennai, India

- Led 120+ member AUV team; mentorship, ops, \$32k budget; TAC podium finishes.

Volunteer, REAL (Rural Education and Action for Liberation)

Jun 2021 – Nov 2021

Sriperumbudur, India

- Arduino workshops for under represented students; SHG financial literacy.